DATASHEET - NZMH4-4-PX1600/VAR NZM4 PXR25 circuit breaker - integrated energy measurement class 1, 1600A, 4p, variable, Screw terminal Part no. NZMH4-4-PX1600/VAR 189650 Catalog No. | Delivery program | | | | |---|------------------------|----|---| | Product range | | | Circuit-breaker | | Protective function | | | Systems, cable, selectivity and generator protection | | Standard/Approval | | | IEC | | Installation type | | | Fixed | | Release system | | | Electronic release | | Construction size | | | NZM4 | | Description | | | LSI overload protection and delayed and non-delayed short-circuit protective device Class 1 energy measurement, r.m.s. value measurement, and "thermal memory" USB interface for configuration and test function with Power Xpert Protection Manager software Interface module in equipment supplied. Optionally communication-capable with internal Modbus RTU module or CAM | | Number of poles | | | 4 pole | | Standard equipment | | | Screw connection | | Switching capacity | | | | | 400/415 V 50 Hz | I _{cu} | kA | 85 | | Rated current = rated uninterrupted current | | | | | Rated current = rated uninterrupted current | $I_n = I_u$ | Α | 1600 | | Neutral conductor | % of phase conductor | % | 0 - 60 - 100 | | Setting range | | | | | Overload trip | | | | | 中 | I _r | A | 800 - 1600 | | Short-circuit releases | | | | | Non-delayed | $I_i = I_n x \dots$ | | 2 – 12 | | Delayed | $I_{sd} = I_r x \dots$ | | 2 – 10 | #### **Technical data** General | General | | | | |---|----|----|--| | Standards | | | IEC/EN 60947 | | Protection against direct contact | | | Finger and back of hand proof to VDE 0106 Part 100 | | Climatic proofing | | | Damp heat, constant, to IEC 60068-2-78
Damp heat, cyclic, to IEC 60068-2-30 | | Ambient temperature | | | | | Ambient temperature, storage | °C | | - 40 - + 70 | | Operation | °C | | -25 - +70 | | Mechanical shock resistance (10 ms half-sinusoidal shock) according to IEC 60068-2-27 | g | | 15 (half-sinusoidal shock 11 ms) | | Safe isolation to EN 61140 | | | | | Between auxiliary contacts and main contacts | V | AC | 500 | | between the auxiliary contacts | V | AC | 300 | | Mounting position | | | Vertical and 90° in all directions With XFI earth-fault release: - NZM1, N1, NZM2, N2: vertical and 90° in all directions with plug-in unit - NZM1, N1, NZM2, N2: vertical, 90° right/left with withdrawable unit: - NZM3, N3: vertical, 90° right/left - NZM4, N4: vertical with remote operator: - NZM2, N(S)2, NZM3, N(S)3, NZM4, N(S)4: vertical and 90° in all directions | |---|------------------|------|---| | Direction of incoming supply | | | as required | | Degree of protection | | | | | Device | | | In the operating controls area: IP20 (basic degree of protection) | | Enclosures | | | With insulating surround: IP40 With door coupling rotary handle: IP66 | | Terminations | | | Tunnel terminal: IP10 Phase isolator and strip terminal: IP00 | | Other technical data (sheet catalogue) | | | Weight Temperature dependency, Derating Effective power loss | | Circuit-breakers | 1 . 1 | ۸ | 1600 | | Rated current = rated uninterrupted current | $I_n = I_u$ | Α | 1600 | | Rated surge voltage invariability | U _{imp} | | | | Main contacts | | V | 8000 | | Auxiliary contacts | | V | 6000 | | Rated operational voltage | U _e | V AC | 690 | | Overvoltage category/pollution degree | | | III/3 | | Rated insulation voltage | Ui | V | 1000 | | Use in unearthed supply systems | | V | ≦ 525 | | Switching capacity Rated short-circuit making capacity | I _{cm} | | | | 240 V | I _{cm} | kA | 275 | | 400/415 V | | kA | 187 | | | I _{cm} | | | | 440 V 50/60 Hz | I _{cm} | kA | 187 | | 525 V 50/60 Hz | I _{cm} | kA | 143 | | 690 V 50/60 H | Ic | kA | 100 | | Rated short-circuit breaking capacity I _{cn} | I _{cn} | | | | Icu to IEC/EN 60947 test cycle 0-t-C0 | lcu | kA | | | 240 V 50/60 Hz | I _{cu} | kA | 125 | | 400/415 V 50/60 Hz | I _{cu} | kA | 85 | | 440 V 50/60 Hz | I _{cu} | kA | 85 | | 525 V 50/60 Hz | I _{cu} | kA | 65 | | 690 V 50/60 Hz | I _{cu} | kA | 50 | | Ics to IEC/EN 60947 test cycle 0-t-C0-t-C0 | Ics | kA | | | 240 V 50/60 Hz | I _{cs} | kA | 63 | | 400/415 V 50/60 Hz | I _{cs} | kA | 50 | | 440 V 50/60 Hz | I _{cs} | kA | 50 | | 525 V 50/60 Hz | I _{cs} | kA | 50 | | 690 V 50/60 Hz | I _{cs} | kA | 37 Maximum back-up fuse, if the expected short-circuit currents at the installation location exceed the switching capacity of the circuit-breaker. | | Rated short-time withstand current | | | | | t = 0.3 s | I _{cw} | kA | 19.2 | | t = 1 s | I _{cw} | kA | 19.2 | | Utilization category to IEC/EN 60947-2 | | | В | | Lifespan, mechanical(of which max. 50 % trip by shunt/undervoltage release) | Operations | | 10000 | | Lifespan, electrical | | | | | AC-1 | | | | |---|------------|-----------------|---| | 400 V 50/60 Hz | Operations | | 3000 | | 415 V 50/60 Hz | Operations | | 3000 | | 690 V 50/60 Hz | Operations | | 2000 | | Max. operating frequency | | Ops/h | 60 | | Total break time at short-circuit | | ms | < 25 ≤ 415 V; < 35 > 415 V | | Terminal capacity | | | | | Standard equipment | | | Screw connection | | Optional accessories | | | Tunnel terminal connection on rear Strip terminal | | Round copper conductor | | | | | Tunnel terminal | | | | | Stranded | | | | | 4-hole | | mm ² | 4 x (50 - 240) | | Bolt terminal and rear-side connection | | | | | Direct on the switch | | | | | Stranded | | mm ² | 1 x (120 - 185)
4 x (50 - 185) | | Module plate | | | | | Single hole | min. | mm ² | 1 x (120 - 300) | | Single hole | max. | mm ² | 2 x (95 - 300) | | Module plate | | | | | Double hole | min. | mm ² | 2 x (95 - 185) | | Double hole | | | | | | max. | mm ² | 4 x (35 - 185) | | Connection width extension | | mm ² | | | Connection width extension | | mm ² | 4 x 300
6 x (95 - 240) | | Al circular conductor | | | | | Tunnel terminal | | | | | Stranded | | | | | 4-hole | | mm ² | 4 x (50 - 240) | | Cu strip (number of segments x width x segment thickness) | | | | | Flat conductor terminal | | | | | | min. | mm | 6 x 16 x 0.8 | | | max. | mm | (2 x) 10 x 32 x 1.0 | | Module plate | | | | | Single hole | | mm | $(2 \times) 10 \times 50 \times 1.0$ | | Bolt terminal and rear-side connection | | | | | Flat copper strip, with holes | min. | mm | 5 x 25 x 1.0 | | Flat copper strip, with holes | max. | mm | (2 x) 10 x 50 x 1.0 | | Connection width extension | | mm | (2 x) 10 x 80 x 1.0 | | Copper busbar (width x thickness) | mm | | | | Bolt terminal and rear-side connection | | | | | Screw connection | | | M10 | | Direct on the switch | | | | | | min. | mm | 25 x 5 | | Modulo ploto | max. | mm | 2 x (50 x 10) | | Module plate | min | mm | 25 v 5 | | Single hole | min. | mm | 25 x 5 | | Single hole | max. | mm | 2 x (50 x 10) | | Module plate | | mm | 2 v /50 v 10) | | Double hole | | mm | 2 x (50 x 10) | | Connection width extension | | mm | CO.: 10 | | Connection width extension | min. | mm | 60 x 10 | | Connection width extension | max. | mm | 2 x (80 x 10) | | Control cables | | | |----------------|-----------------|--------------------------------------| | | mm ² | 1 x (0.75 - 2.5)
2 x (0.75 - 1.5) | ### Design verification as per IEC/EN 61439 | • | | | | |---|------------------|----|--| | Technical data for design verification | | | | | Rated operational current for specified heat dissipation | In | Α | 1600 | | Equipment heat dissipation, current-dependent | P _{vid} | W | 284 | | Operating ambient temperature min. | | °C | -25 | | Operating ambient temperature max. | | °C | 70 | | IEC/EN 61439 design verification | | | | | 10.2 Strength of materials and parts | | | | | 10.2.2 Corrosion resistance | | | Meets the product standard's requirements. | | 10.2.3.1 Verification of thermal stability of enclosures | | | Meets the product standard's requirements. | | 10.2.3.2 Verification of resistance of insulating materials to normal heat | | | Meets the product standard's requirements. | | 10.2.3.3 Verification of resistance of insulating materials to abnormal heat and fire due to internal electric effects $$ | | | Meets the product standard's requirements. | | 10.2.4 Resistance to ultra-violet (UV) radiation | | | Meets the product standard's requirements. | | 10.2.5 Lifting | | | Does not apply, since the entire switchgear needs to be evaluated. | | 10.2.6 Mechanical impact | | | Does not apply, since the entire switchgear needs to be evaluated. | | 10.2.7 Inscriptions | | | Meets the product standard's requirements. | | 10.3 Degree of protection of ASSEMBLIES | | | Does not apply, since the entire switchgear needs to be evaluated. | | 10.4 Clearances and creepage distances | | | Meets the product standard's requirements. | | 10.5 Protection against electric shock | | | Does not apply, since the entire switchgear needs to be evaluated. | | 10.6 Incorporation of switching devices and components | | | Does not apply, since the entire switchgear needs to be evaluated. | | 10.7 Internal electrical circuits and connections | | | Is the panel builder's responsibility. | | 10.8 Connections for external conductors | | | Is the panel builder's responsibility. | | 10.9 Insulation properties | | | | | 10.9.2 Power-frequency electric strength | | | Is the panel builder's responsibility. | | 10.9.3 Impulse withstand voltage | | | Is the panel builder's responsibility. | | 10.9.4 Testing of enclosures made of insulating material | | | Is the panel builder's responsibility. | | 10.10 Temperature rise | | | The panel builder is responsible for the temperature rise calculation. Eaton will provide heat dissipation data for the devices. | | 10.11 Short-circuit rating | | | Is the panel builder's responsibility. The specifications for the switchgear must be observed. | | 10.12 Electromagnetic compatibility | | | Is the panel builder's responsibility. The specifications for the switchgear must be observed. | | 10.13 Mechanical function | | | The device meets the requirements, provided the information in the instruction leaflet (IL) is observed. | | | | | | ### **Technical data ETIM 8.0** Low-voltage industrial components (EG000017) / Power circuit-breaker for trafo/generator/installation protection (EC000228) Electric engineering, automation, process control engineering / Low-voltage switch technology / Circuit breaker (LV < 1 kV) / Circuit breaker for power transformer, generator and system protection (ecl@ss10.0.1-27-37-04-09 [AJZ716013]) | protestion (consecution 2) or or to the protestion | | | |---|----|--| | Rated permanent current lu | А | 1600 | | Rated voltage | V | 690 - 690 | | Rated short-circuit breaking capacity Icu at 400 V, 50 Hz | kA | 50 | | Overload release current setting | Α | 800 - 1600 | | Adjustment range short-term delayed short-circuit release | Α | 2 - 10 | | Adjustment range undelayed short-circuit release | Α | 3200 - 38400 | | Integrated earth fault protection | | No | | Type of electrical connection of main circuit | | Screw connection | | Device construction | | Built-in device fixed built-in technique | | Suitable for DIN rail (top hat rail) mounting | | No | | DIN rail (top hat rail) mounting optional | | No | | Number of auxiliary contacts as normally closed contact | | 0 | | Number of auxiliary contacts as normally open contact | | 0 | | Number of auxiliary contacts as change-over contact | | 0 | | | | | | With switched-off indicator | No | |---|--------------| | With integrated under voltage release | No | | Number of poles | 4 | | Position of connection for main current circuit | Front side | | Type of control element | Rocker lever | | Complete device with protection unit | Yes | | Motor drive integrated | No | | Motor drive optional | Yes | | Degree of protection (IP) | IP20 | # **Dimensions** - ② Minimum clearance to adjacent parts Ui ≤ 1000 V: 15 mm Ui ≤ 1500 V: 70 mm ## **Additional product information (links)** | • | | | |---|--|--| | IL012101ZU NZM4-PXR circuit-breaker, basic device, NZM4-PXR Circuit-Breaker, basic unit | | | | IL012101ZU NZM4-PXR circuit-breaker, basic device, NZM4-PXR Circuit-Breaker, basic unit | https://es-assets.eaton.com/DOCUMENTATION/AWA_INSTRUCTIONS/IL012101ZU2022_01.pdf | | | Weight | http://ecat.moeller.net/flip-cat/?edition=HPLEN&startpage=17.171 | | | Temperature dependency, Derating | http://ecat.moeller.net/flip-cat/?edition=HPLEN&startpage=17.172 | | | Effective power loss | http://ecat.moeller.net/flip-cat/?edition=HPLEN&startpage=17.174 | | | additional technical information for NZM power switch | https://es-assets.eaton.com/DOCUMENTATION/PDF/nzm_technic_de_en.pdf | |